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Abstract

In this paper we obtain presentations of fundamental groups of the complements of three quadric-
line arrangements if2. The first arrangement is a smooth quaddiavith » tangent lines ta, and
the second one is a quadr with » lines passing through a poipt¢ Q. The last arrangement
consists of a quadri@ with n lines passing through a poipte Q.
0 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This is the first of a series of articles in which we shall study the fundamental groups of
complements of some quadric-line arrangements. In contrast with the extensive literature
on line arrangements and the fundamental groups of their complements, (see, e.g., [14,7,
15]), only a little known about the quadric-line arrangements (see [12,1,2]). The present
article is dedicated to the computation of the fundamental groups of the complements
of three infinite families of such arrangements. A similar analysis for the quadric-line
arrangements up to degree six will be done in our next paper.

Let C ¢ IP? be a plane curve angde P?\ C a base point. By abuse of language we will
call the groupr1(P? \ C, ) thefundamental group of , and we shall frequently omit base
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Fig. 1. The arrangemes.

points and writer1(P?\ C). One is interested in the groap (P2 \ C) mainly for the study

of the Galois covering® — P? branched along@”. Many interested surfaces have been
constructed as branched Galois coverings of the plane, for example for the arranggment

in Fig. 1, there are Galois coverings— P2 branched alongls such thatX ~ P! x P1,

or X is an abelian surface, a K3 surface, or a quotient of the twola(see [9,8,17]).
Moreover, some line arrangements defined by unitary reflection groups studied in [13] are
related taAs via orbifold coverings. For example, ff is the line arrangement given by the
equation

xyzx+y+2)x+y—20x—y+2)x—y—2)=0

then the image of under the branched covering map: y : z] € P2 — [x2: y?: z%] € P?
is the arrangemems, see [17] for details.

The standard tool for fundamental group computations is the Zariski-van Kampen
algorithm [19,18], see [3] for a modern approach. We use a variation of this algorithm
developed in [16] for computing the fundamental groups of real line arrangements and
avoids lengthy monodromy computations. The arrangentgnendC, discussed below
are of fiber type, so presentations of their fundamental groups could be easily found as
an extension of a free group by a free group. However, our approach has the advantage
that it permits to capture the local fundamental groups around the singular points of these
arrangements. The local fundamental groups are needed for the study of the singularities
of branched o2 branched along these arrangements.

In Section 2 below, we give fundamental group presentations and prove some immediate
corollaries. In Section 3 we deal with the computations of fundamental group presentations
given in Section 2.

2. Results

Let C c P? be a plane curve an@ an irreducible component of . Recall that a
meridian . of B in P2\ C with the base poink € P? is a loop inP? \ C obtained by
following a pathw with @ (0) = * andw (1) belonging to a small neighborhood of a smooth
point p € B\ C, turning around in the positive sense along the boundary of a small disc
A intersectingB transversally ap, and then turning back te alongw. The meridianu
represents a homotopy classsn(P? \ C, %), which we also call a meridian a8. Any
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two meridians ofB in P2\ C are conjugate elements of (P?\ C) (see, e.g., [10, 7.5]),
hence the meridians of irreducible component€adre supplementary invariants of the
pair (P2, C). These meridians are specified in presentations of the fundamental group given
below, they will be used in orbifold-fundamental group computations in [17].

2.1. The arrangemend,,

Theorem 1. Let A, := QUT1U---UT, be an arrangement consisting of a smooth quadric
Q with n distinct tangent linegn, ..., T,. Then

Ki = ‘L’,'Ki_l‘L'l-_l, 2<i<n
2 2 .
T1, o .., Tns KiTi) = (i), 1<i<n
Nl(Pz\An)Z 1 n (l—i) (1 z) X .\ '
K1, ...,Kn [Kl- ri/ci,tj]:l,1<1<]<n
tnmrl/clz:l

)

wherek; are meridians ofQ andt; is a meridian of7; for 1 <i < n. Local fundamental
groups around the singular points of,, are generated b)(/ci_lri/q, ;) for the nodes
T; N T; and by(x;, t;) for the tangent pointg; N Q.

Part (i) of the corollary below is almost trivial. Part (ii) appears in [6], and part (iii) was
givenin [4].

Corollary 2.

(i) One has m1(P?\ Ap) ~Z.
(i) The groupry(P?\ Ap) admits the presentation

nl(IP’z \ A2) > (r,k | (tk)? = (K‘L’)2>, (2)
wherex is a meridian ofQ andr is a meridian of7y. A meridian of7> is given by
k2771,

(i) The groupr1(P?\ A3) admits the presentation
m1(P?\ As) = (v, 0,k | (10)? = (k)% (01)% = (k0)?, [0, 7] = 1) 3)

whereo, v are meridians of71 and T3 respectively, andc is a meridian of Q.
A meridian ofT3 is given by(xtko) L.

A groupG is said to bebig if it contains a non-abelian free subgroup, @amaallif G is
almost solvable. In [6], it was proved by V. Lin that the group (2) is big. Below we give an
alternative proof:

Proposition 3. For n > 1, the groupr1(P?\ A,) is big.

Proof. A group with a big quotient is big. Since,.1 is a meridian off;,1 in w1(P?\
An+1), one has

m1(P?\ Ay) = w1 (P2 Apga)/{(Tnga).



162 M. Amram et al. / Topology and its Applications 130 (2003) 159-173

and it suffices to show that the gromp(P? \ A>) is big. In the presentation (2), applying
the change of generatars= t«, 8 := t gives

71 (P?\ A2) e B | [0, p] =1).

Adding the relationsx? = % = 1 to the latter presentation gives a surjectiof(P? \
A2) = Z/(2) % Z./(3). Since the commutator subgroup®f(2) « Z/(3) is the free group
on two generators (see [5]), we get the desired resuit.

2.2. The arrangemer,

Theorem 4. LetB, :=QUT1UT>,UL1U---UL, be an arrangement consisting of a
smooth quadri@) with n 4 2 distinct linesTy, 7», L1, ..., L, all passing through a point
p ¢ O such thatly, T, are tangent toQ. Then one has

(kT)? = (1)
PP\ By) = { Tk Ads e A |21 =1, 1<i < 4
[r‘lxt,ki] =1 1<i<n

wherer is a meridian ofly, A; is a meridian o’rL,- for 1 <i < n, andk is a meridian ofQ.
A meridiano of T» is given byo := (A, ... A1k%7) "1 Local fundamental groups around
the singular points of3, are generated by, ;) and (t 1k, A;) for the noded.; N Q,
by («, T) for the tangent poinfy N Q, and by(k, o) for the tangent poini> N Q.
Corollary 5. (i) PutB), := B, \ T1 and B} := B\ T>. Then

71 (P?\ B)) = w1 (P?\ B 1) =k, A1, oo dn | [, 21 =1, 1<i < ). (5)

Proof. One hasr1(P?\ B)) ~ m1(P?\ B,)/ (). Settingr = 1 in presentation (4) gives
71 (P2\ B) = (i, A1y ooy A | i, Ml =1, 1< <.

Settingr = 1 in the expression for a meridian of 7> given in Theorem 4 shows that
(A ... 21x®)~Lis a meridian off in 71(P? \ B.). In order to findry (P2 \ BY), it suffices
to seth, ... 162 = 1 in the presentation of1(P? \ B,). Eliminating 1, by this relation
yields the presentation

71 (P?\ B)) 2 (i, A1, .oy At | [hiv k] = Ca? k] =1).

L o

Fig. 2. Arrangements, and3;,.
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Fig. 3. Arrangement€3 andCs.

Since the last relation above is redundant, we get the desired isomorph®h\ B//) ~
m(P2\B,,,). O

Note that the groupsry(P? \ B!) are abelian fori = 0,1,2. Hence, the groups
m1(P?\ B!) are abelian for = 0, 1. Otherwise, setting = 1 in presentation (5) gives
the free group om — 1 generators, which shows that these groups are big. The groups
w1(P? \ B,) are always big, since the arrangemBptis same asdy, andw1(P? \ A) is
big by Proposition 3.

2.3. The arrangemeird},

Theorem 6. LetC,:=QUT ULy U---U L, be an arrangement consisting of a smooth
quadric Q with n + 1 distinct linesT, L1, ..., L,, all passing through a poing € Q such
that T is tangent toQ. Then one has

71 (P?\ Co) = (i, A1s ooy hn LI, 21 =1, 1< <), (6)

wherex is a meridian ofQ andA; is a meridian ofL; for 1 <i <n. A meridiant of T is
given byt := (A, ... 1«2)~L. Local fundamental groups around the singular point§,pf
are generated byk, A;) for the noded.; N Q, and by(z, A1, ..., A, k) for the pointp.

Note that the arrangemeid}, is a degeneration (in the sense of Zariski) of the
arrangemens;, as the poinp approaches t@. By Zariski's “semicontinuity” theorem of
the fundamental group [19] (see also [5]), there is a surjecti@i? \ C,,) — m1(P?\ B).

In our case, this is also an injection:

Corollary 7.

(i) m1(P?\ B)) =~ mw1(P?\ Cy).
(i) PutC):=Cy\ T. Thenr1(P?\ C,) >~ m1(P?\C,, ).

n

Proof. Part (i) is obvious. The proof of part (ii) is same as the proof of Corollary 5, (ii).
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3. Thearrangement A,

Itis easily seen that any two arrangemenjswith fixedn are isotopic. In particular, the
groupsm1(P? \ A,) are isomorphic. Hence one can take as a model of the arrangements
A, the quadricQ defined byx? + y? = z2, where[x : y : z] € P? is a fixed coordinate
system inP2. Pass to the affine coordinates@¥ ~ P2 \ {z = 0}. Choose real numbers
X1,...,xp Suchthat-1<x1 < x2 < --- <x, <0, and defing; to be the positive solution
of xiz + yl? =1for1<i <n.Puts :=(x;,y;) € Q, and takefl; to be the tangent line t@
at the point; (see Fig. 4).

Let pr; : C2\ A, — C be the first projection. The base of this projection will be denoted
by B. PutfFy := pr;l(x), and denote by the set of singular fibers of prit is clear that if
F, € S, thenx € [—1, 1]. There are three types of singular fibers:

(i) The fibersF1 andF_1, corresponding to the ‘branch points-1, 0) and(1, 0).
(i) ThefibersF,, (1 <i < n)corresponding to the ‘tangent points= (x;, y;) = T; N Q.
(iii) The fibers Fy, ; (1 <i # j < n) corresponding to the nodes ; = (ai j, bi ;) :=
T; N T;. One can arrange the lin@s such that

—l<xi<aip<aiz<---<aip<xz<azz<---<x, <1

Identify the baseB of the projection py with the liney = —2 ¢ C?. Let N be the
number of singular fibers and letl =51 < s2 < --- < sy-1 < sy = 1 be the elements of
SN B (so thats, = x1, s3 = a1,2, sa = a1,3, and so on). INB, take small discs\; around
the pointss;, and denote by;, d; (¢; < d;) the pointsdA; NR for 1 <i < N (see Fig. 5).

Put B1 :=[c1,c2] U A7 and for 2<i < N let B; :=[c1,ci+1] U A1 U --- U A;. Let
X; :=pr-1(B;) be the restriction of the fibration pr ). Let

Ai = A U3({3(2) <0, c2<M(2) i} \ (A2U AzU---U 4;_1))

and letY; := pr-1(4;) be the restriction of the fibration pr t#; (see Fig. 6).

Clearly, X; = X;—1 U Y; for 2 <i < N. We will use this fact to compute the groups
m1(X;, %) recursively, where: := (c2, —2) is the base point. For details of the algorithm
we apply below, see [16].

T,

Fig. 4.
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Fig. 5. The base.

)

Fig. 6. The spacd; .

Y(li) 'Y(zi) Yglz
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Fig. 7.

Identify the fibers of py with Fo via the second projection pr (x, y) e C2 — y € C.
In each oneof the fibersF,, (respectivelyFy,) take a basis fofry (F¢,, —2) (respectively
for w1 (Fy, —2)) as in Fig. 7 (forFy,, just replacey’s by 6's in Fig. 7). We shall denote
these basis by the vectols := [yl(’), . n(j:z] (respectively®); := [9{’), e 9,522]).

Letv; C B; C B be a path starting at (0) = ¢2, ending at; (1) = ¢; and such that

vi([0,1]) = 9({S(2) <0, c2<NR(D) i} \ (420 A3U---U A;_1)).

Similarly, letn; C B; € B be a path starting af(0) = ¢2, ending atp(0) = d; and such
that

i ([0,1]) = 3({3(2) €0, c2 <N (2) <di}\ (A2UA3U---U A)).
For2<i< N and 1< j <n+ 2each Ioog?}” = - y@ . vl.‘l represents a homotopy

class inm1(X;, %), wherex := (cz, —2) is the base point. Similarly, each Iocﬁé") =
ni - 6; - 07 represents a homotopy classin(X;, x). Denotel; := [7,", ..., )7,1(22], and
(;i = [é{l), ey ér(zl-i)-Z]
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It is well known that the group1(Y;, *) has the presentation

<y1('),...,yn+2|y(’) M;(y (')) 1<j<n+2 )

where M, : 1 (F;;, —2) — m1(F;, —2) is the monodromy operator around the singular
fiber aboves;. It is also well known that if it is the branches of, corresponding to
the IoopSy(’) and k(fﬁl that meet abovs;, then the only non-trivial relation in (7) is

7 = 7", in case of a branch poirity”, 7”1 = 1 in case of a node, arg" 7")? =

(y(l)yk(f:l)z in case of a tangent point.

Now suppose that the groupi(X;_1, *) is known, with generatorsfg. Recall that
X; = X;_1UY;. In order to find the groupr1(X;, %), one has to express the bakein
terms of the basd. Adding to the presentation of1(X;_1) the relation obtained by
writing the relation ofr1(Y;) in the new base then yields a presentatiomr gfX;). Note
that, since the spadg is eventually glued tcX;_1, it suffices to find an expression of
in terms of the basé> in the groupry (Xi_1, *).

Since all the points ofd,, above the intervdld; 1, ¢;] are smooth and real, one has

Fact. The Ioopséj(.i_ and y(’) are homotopic inX; (or in ¥;) for 2<i < N and
1< j <n+ 2. In other words, the baseS;_; and I'; are homotopic.

In order to express the bagz in terms of the basé; the following lemma will be
helpful.

Lemma 8. Let Ci: x? — y¥*1 = 0 be an A; singularity, wherek = 1 or k = 3. Put

D :={(x,y): |x| <1, |y| <1} and letpr; := (x,y) € D \ Cx — (x,—1) be the first
projection. Denote by, the fiber ofpr; above(x, —1). Identify the fibers opr; via the
second projection. Let1 < ¢ < 0 be a real number, and put:= —c. In F, (respectively
in Fy) take a basisl™ := [y1, y2] for mi(F,, —1) (respectively a basi® := [61, 6] for

n1(F;, —1)) as in Fig. 8. Letn be the pathy(r) := ce™, and putd; :=n -6 - n~1 for

i =1,2. Theny;, 6; are loops inD \ C; based at := (¢, —1), and one has

(i) If k=1, then 61 is homotopic toy,, and 6> is homotopic toys, in other words,
O =lynl —
(i) If k=3, then® = [y2y1y, =, v “veril.

Fig. 8.
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11 V2 v, T

Fe Hq

Fig. 9.

Proof. Sincer1(D \ C2) is abelian, part (i) is obvious. For part (ii), note that the points
of intersectionF, ;) N C4 arey; := c2€*™"" andy := —c?€*""". Hence, when we move the
fiber F,. over F; along the path;, y; andy, make one complete turn around the origin
in the positive sense. The loops, y» are transformed to loopg:, ¥, C F; as in Fig. 9.

It follows that the loopn - ¥; - n~ is homotopic toy; for i = 1, 2. This homotopy can
be constructed explicitly as follows: L&, : F. — F, () be the corresponding Leftschez
homeomorphism (see [11]). Then

n(3s), 0<s<1/3,
H(s, 1) =1 Pny (vi (3G —=1/3)/(3=20))), 1/3<s<1~1/3,
n(3(1—ys)), 1-1/3<s<1

gives a homotopy between andy;. Expressing; in terms ofy;, we get
01= J7I1)751)71)72)71 = )/1_1)/2_1)/1)/2)/1,
b = J7I1)72)71 = V1_1V2V1-
Since from the monodromy one has the relatipny»)? = (y2y1)?, the expression fof,

can be simplified to get; = )/2)/1)/2_1- O

Now we proceed with the computation of the group$X;). Clearly, the groupr1(X2)
is generated by the base

~ [, ,,@ o)
FZ_[J/]_ ,]/2 ,...,'}/n_"_z]
with the only relations
2 2
o =y ©
and
(2), (2))2 ). (22
Put
[k1, k1, T1, ..., Tul := T2

Then relation (9) becomes

(k171)? = (1161) % (10)
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By Lemma 8 and the above Fact, one has
N -1, -1
3= 0= [k1, 1k1Ty K] TIKL, T2, -0, T -

Sincess corresponds to the nodg N 7>, the next relation is

[Kl_l‘rll(]_, t2] =1 (11
Hence,
m1(X3,%) ~ (K1, T, Ty | (k171)? = (12K1)%, [Kl_lflKl, ] =1).

By Lemma 8, one has

[h=063= [KL T1K1T1_l, 2, Kl_lflKl, 73, ..., fn].
Sincesy corresponds to the nodg N T3, one has the relation

[Kl_l‘ElK]_, 1:3] =1
Hence,

X ~ 2 __ 2
m1(X4, %) = (K1, 71, ..., Ta | (61T2) = (T2K1)%,
-1 -1
[Kl T1K1, ‘L’2] = [Kl T1K1, ‘53] = l).

By Lemma 8, one has

J - -1 -1

5= 04 =K1, T1K1T; *, T2, T3, k7 TIKL, T4 .-, Tn -

Since sy corresponds to the nodE N Tx—1 for 2 < k < n + 1, repeating the above
procedure gives the presentation

2 2 -1
11 (Xnp 1, %) = (K1, 71, .o T | (k1707 = (Tac)?, [k Tk, ] =1, 2<k <n)
and
~ < .
T2 =0pt1 = [Kl» K2,72,73, ..., Tn, Kq TlKl]v

where we puk;1 = tii; 7, Tfor 1<i <n—1.
The next point, 42 corresponds to the tangent poitn Q. This gives the relation

2 2

(k212)" = (T2K2) (12)
and

~ o= . -1 -1 -1

D2 = Ony1 =K1, T2k2T, *, Ky ToK2, T3, ..., Tn, K1 T1K1].

Now comes the: — 2 pointss; corresponding to the nod@s N Ty, forn +3 < 2n + 1.
These give the relations

[Kz_l‘le(z, ‘L'k] =1 3<k<n.
Hence, one has
1 (X4t %) = (K1, K2, TL, ..., Tn | K2 = fllcltl_l, (kit1)? = (tiki)?,
[k ki, ] =1 i <k<n, i=12)
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We proceed in this manner until the last singular filper Since this is a branch point, the
final relation is

Kn = K1. (13)
This gives the presentation
K = ti/ci_lti_l, 2<i<n

(kiti)? = (tiki)%, 1<i<n
[K-_l‘EiKl‘,‘L'j]:l, 1<i<j<n

i
K1 =Kpn

T ( Xy, %) >3 1,k, 1<i<n (14)

Adding to this presentation of1(Xy, %) the projective relation;, - - - 1:1/<12 =1 gives the
presentation

Ki = ‘L’iKi_l‘L'l-_l, 2<i<n
(kit)? = (tikj)?, 1<i<n

71(PP\ A,) ~ ki, 1<i < - 15
1(F5\ ) LR ESEST [« ki, 7] =1 1<i<j<n (15)
‘L'n...‘l,']_l(l2=1, K1=Kp
Note that the relatior; = «;, is redundant. Indeed, sineg= ri/q_lti_l, one has
Kkn=(ty...TOK1(Ty . .. ‘171)_1. (16)

But 7, ... 71 = k2 by the projective relation. Substituting this in (16) yields the relation
k1 = k. This finally gives the presentation (1) and proves Theorem 1. Claims regarding
the local fundamental groups around the singular pointd,pére direct consequences of
the above algorithm.

3.1. Proof of Corollary 2

(i) The arrangementl;. Writing down the presentation (1) explicitly far= 1 gives

(k171)? = (K171)2 } '

7'[1(}}1’2\.,41) ~ {Kl, 71 thf -1

Eliminating r1 from the last relation shows that (P2 \ A1) ~ Z.

(ii) The arrangementl,.  Writing down the presentation (1) explicitly far= 2 gives

(1) k2 = T1k17y *

(2) (k171)? = (11K1)?
71(P?\ Az) = { k1, k2, 11, 72 | () (k212)? = (T262)?

4 [Kl_ltll(l, t2] =1

5) ‘L’z‘L’lKlz =1

Eliminating 2 by (1) andt, by (5) one easily shows that the relations (3) and (4) are
redundant. This leaves (2) and gives the desired presentation.
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(i) The arrangementlz. Writing down the presentation (1) explicitly far= 3 gives

(1) k2 =Ttaka17] (@) ks = (r)ra(rer)
(3) (k11)? = (11€1)? (D) (k212)? = (T2K2)?
(5) (k373)? = (tak3)®  (6) [y iy, 1] = 1
(7 [Kl_lrllcl, 13] =1 (8 [K2_1T2K2, 13] =1
9 1:31:21:1/(12 =1

K1, K2, K3,
71,72, 13

m1(P?\ Asg) >~

Eliminatexz by (1), k3 by (2), andtz by (9). It can be shown that the relations (4), (6)
and (8) are consequences of the remaining relations. The relation (5) beoamg$ =
(r3x1)2. This gives the presentation

71 (P?\ Ag) = (i1, 71, 13 | (k171)? = (11612,
(k173)% = (rax1)?, [k 1ak1, 73] = ).

Finally, putk :=«1, T := Kl_l‘l,']_K]_ ando := 3. Thent; = ki1, and the first relation
in the above presentation beconedrx —1)2 = (k1)?2 = (k1)% = (t«)2. This gives the
desired presentation.

4. Thearrangement B,

As in the case of the arrangememts, it is readily seen that arrangemeifts are all
isotopic to each other for fixed, so one can compute; (P2 \ B,) from the following
model for3,’s (see Fig. 10): The quadri@ is given by the equation? + y2 =1, andp
is the point(2, 0). The linesL; intersectQ above ther-axis.

The projection to the-axis has four types of singular fibers:

T

Fig. 10.
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(i) The fibersF; andF_1, corresponding to ‘branch points’.
(i) The fiber F, corresponding to the ‘tangent pointék,y) =1 := 71 N Q and
(x,=y)=12:=T2N Q.
(iii) ThefibersF,,, ..., F,, (—1<a, <--- <a1 < x) corresponding to the nodés N Q
lying on the right of the tangent points and the fib&s, ..., Fp, (x <bi <--- <
b, < 1) corresponding to the nodés N Q lying on the left of the tangent points.
(iv) The fiber F», corresponding to the point.

In order to find the groupry(P? \ B,), we shall apply the same procedure as in the
computation ofr1(P? \ A,). Let y € R be such that-1 < y < a,, and takeF, to be
the base fiber. Lety := —1, s;41:=b; for L <i < n, sp42 := X, Spy2+i := dyy1—; for
1<i<n,andsy,43:=1, andsy,+4 = 2. Take a basis

I :=[t,k1,k2,A1, ..., Ap, 0]

for Fy asinFig. 7.
Sinces; corresponds to a branch point, one has the relatica «2. Putk := k1 = «2.
The pointsz is a node, and yields the relatipm A1] = 1, and one has

F3=[TaKyA'lyKyA'Zy"'yA'llaa]'

Repeating this for the nodes, ... ., s,+1 gives the relationfc, A;] =1 for 1<i <n, and
one has

fn+2: [Tk, A1, ..., An, K, 0].
The monodromy around the fibgt gives the relationsr«)? = (k)2 and(ox)? = (ko)2.
One has

1 1

Iy43= [K‘L’K_ ,T_l/cr, A, ..oy An, oxo_l,/c_ UK].

Since the points, ;. 3, . . ., 52,42 corresponds to nodes, one has the relatibngrxo —1] =

1, and
143 = [K‘L’K_l, ‘L'_lK‘L', o/co_l, Ay vy An, K_]'GK].

The branch point correspondingsg, 3 yields the relation

t it =oko L.
Together with the projective relatioma, ... k%t = 1 these relations already gives a
presentation ofr1 (P2 \ B,), since one can always ignore one of the singular fibers when
computing the monodromy (see [16]).

We obtained the presentation

(D) (k1)? = (16)?

(2) (ko) = (0k)?

Rt Wkt =0ko1

@) [k, 2]=1 1<i<n

(5) [o/ca_l,)»,-] =1 1<i<n
(6) oAp... 2Kkl =1

PP\ By) = { A, Tk, Ay ey hny O
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PutA :=A,...A1. Eliminatingo by (7), it is easily seen that (3) is redundant. Relation (2)
becomes

(A/(zr/c_l)2 = (K_lAKz‘E)Z

i [t_l/cr, A] =1

But this relation is a consequence of (4), so that (2) is also redundant. Siee =
oko~1 by (3), the relation (5) can be written g3 1«7,2;] = 1. This gives the
presentation (4) and proves Theorem 4.

5. Thearrangement C,

In order to compute the group, consider the modet,p§hown in Fig. 11, wher@ is
given byx? + y? = 1. Suppose that the second points of intersection of the linagith
Q lie above thex-axis. As in the previous cases, take an initial base

[ =K1, k2, ALs -y Ay T].

The relation induced by the branch pointis= x2 =: . The nodes of,, will give the
relations[x, A;]=1for 1<i <n, and one has

ﬁ1+2= [Ka)\'la "'7)\'}19/(9‘[]'
One can simplify the computation of the monodromy around the complicated singular
fiber as follows: PutA := 4, ... 1. By the projective relation one hastk? =1=—> 7 =
k2A~1. Hence|«x, t] = 1. Since we also havg, 1;] = 1 for 1< i < n, this means that
when computing the monodromy around this fiber, one can ignore the b@ndthis
leavesn + 1 branches intersecting transversally, and the induced relation is (see [16])

[tA, A]=[rA, 7] =1, (17)
and one has
ﬁ1+3 = [Ka K’ .. ']'

The last relation induced by the branch point yields the trivial relatiesnx, as expected.

T

Ln

Li

Fig. 11.
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Eliminatingt shows that the relations (17) are redundant and gives the presentation
71 (P?\ Co) 2 (kAo hg | [Ai k] =1). O
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